Index of the slides:

Natural Deduction and Sequent Calculus	2
Heyting Algebras	
Some DAGs are Heyting Algebras	4
Calculating $V \supset W$	
"Mundo funcional" e "Mundo lógico" (Curry-Howard)	
Preamble: DGs and topologies	7
Preamble: each DG induces a topology	8
Preamble: truth-values	
Topological spaces	10
Preorders and partial orders	11
The minimal DAG for a topology	12
Presheaves	13
A subtopology of \mathbb{R}	14
Coherent families	15
Saturation and bisaturation	16
A (bad) presheaf on a DAG	17
A presheaf on a DAG: its space of germs	18
Dense and stable truth-values	
Substitution principles for '⇔'	20
Lawvere-Tierney Modalities	
LT-modalities and 'and'	22
LT-modalities and 'or'	23
LT-modalities and implication	24
The topologies for 'or' and 'implies'	25
More about double negation	26
Modalities: alternative axioms	27
LT-modalities and the quantifiers	28
The fibration of saturated covers	29
Embedding	30
Geometric morphisms	31

Natural Deduction and Sequent Calculus

$$\frac{[P\&Q]^1}{\frac{P}{\frac{P\&R}{P\&R}}} \frac{\frac{[P\&Q]^1}{Q} \quad Q \supset R}{\frac{P\&R}{P\&Q \supset P\&R}} \ 1$$

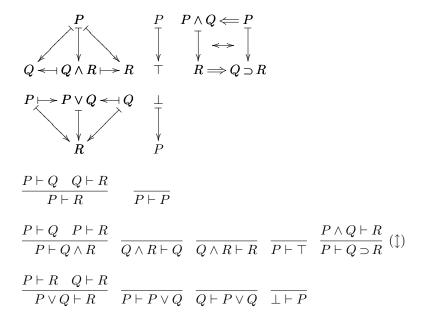
$$\frac{P\&Q \vdash P\&Q}{P\&Q \vdash P} \quad \frac{P\&Q \vdash P\&Q}{P\&Q \vdash Q} \quad Q \supset R \vdash Q \supset R \\ \hline Q \supset R, P\&Q \vdash R \\ \hline Q \supset R, P\&Q \vdash P\&R \\ \hline Q \supset R \vdash P\&Q \supset P\&R$$

Heyting Algebras

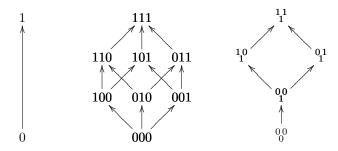
A Heyting Algebra is a 7-uple $(\Omega, \top, \bot, \wedge, \vee, \supset, \vdash)$, where:

$$\begin{array}{rcl} \top,\bot & \in & \Omega, \\ \wedge,\vee,\supset & : & \Omega\times\Omega \to \Omega, \\ \vdash & \subseteq & \Omega \end{array}$$

and the relation \vdash respects the following "derivation rules":



Here are three Heyting Algebras:



Note: consider the partial order induced by the DAGs above - i.e., the reflexive/transitive closure of the DAGs.

Some DAGs are Heyting Algebras

Theorem: if

$$\begin{split} &(\Omega, \top, \bot, \wedge, \vee, \supset, \vdash) \text{ and } \\ &(\Omega, \top', \bot', \wedge', \vee', \supset', \vdash) \text{ are Heyting Algebras, then } \\ &\text{we have } \\ &\top \leftrightarrow \top', \\ &\bot \leftrightarrow \bot, \\ &\text{and for any } P, Q \in \Omega, \\ &P \wedge Q \leftrightarrow P \wedge' Q, \\ &P \vee Q \leftrightarrow P \vee' Q, \end{split}$$

$P \supset Q \leftrightarrow P \supset' Q$. **Proof** (half of it):

Theorem: if

 $(\Omega, \top, \bot, \land, \lor, \supset, \vdash)$ and $(\Omega, \top', \bot', \land', \lor', \supset', \vdash)$ are Heyting Algebras and (Ω, \vdash) is a DAG, then $\top = \top', \bot = \bot', \land = \land', \lor = \lor', \supset = \supset'.$ So, if a DAG (Ω, \vdash) is Heyting Algebra, then it is a Heyting Algebra in a unique way: $\top, \bot, \land, \lor, \supset$ are well-defined.

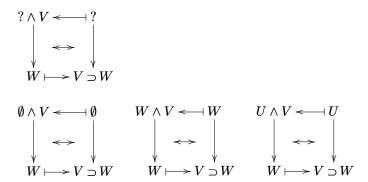
Amazing fact:

For any topological space $(X, \mathcal{O}(X))$, the DAG $(\mathcal{O}(X), \subseteq)$ is a Heyting Algebra.

Calculating $V \supset W$

What is $V \supset W$?

Idea: look at all Us such that $U\&V \vdash W$.



In $\mathcal{O}(\mathbb{V})$, this works for these open sets: $\frac{1}{1}^{0}$.

Define $V \supset W$ as the greatest of them.

More formally:

 $V \supset W := \sup\{U \mid U\&V \vdash W\}$ $V \supset W := \bigcup\{U \mid U\&V \vdash W\}$ $V \supset W := \bigcup\{U \mid U \cap V \subseteq W\}$ $V \supset W := \bigcup\{A^{\circ} \mid A^{\circ} \cap V \subseteq W\}$ $V \supset W := \bigcup\{A^{\circ} \mid A^{\circ} \subseteq W \cup (X \setminus V)\}$ $V \supset W := (W \cup (X \setminus V))^{\circ}$

"Mundo funcional" e "Mundo lógico" (Curry-Howard)

Compare a prova abaixo à esquerda, em Dedução Natural, de que $Q\supset R$ implica $P\wedge Q\supset P\wedge R$, com a construção do termo $\lambda d:A\times B.\langle\pi d,f(\pi'd)\rangle:(A\times B\to A\times C)$ em λ -cálculo simplesmente tipado:

$$\frac{[P \wedge Q]^1}{\frac{P}{Q}} \frac{\frac{[P \wedge Q]^1}{Q}}{\frac{Q}{Q} \supset R} \qquad \underbrace{\frac{[d:A \times B]^1}{\pi d:A} \frac{\frac{[d:A \times B]^1}{\pi' d:B} f:B \to C}{\frac{\pi d:A}{Q} f(\pi' d):C}}_{\frac{(\pi d, f(\pi' d)):A \times C}{Q} \supset P \wedge R)} 1 \qquad \underbrace{\frac{[d:A \times B]^1}{\pi' d:B} f:B \to C}_{\frac{\pi d:A \times B}{Q} \supset R} \qquad \underbrace{\frac{[d:A \times B]^1}{\pi' d:B} f:B \to C}_{\frac{\pi d:A \times B}{Q} \supset R} \qquad \underbrace{\frac{[d:A \times B]^1}{\pi' d:B} f:B \to C}_{\frac{\pi d:A \times B}{Q} \supset R} \qquad \underbrace{\frac{[d:A \times B]^1}{\pi' d:B} f:B \to C}_{\frac{\pi d:A \times B}{Q} \supset R} \qquad \underbrace{\frac{[d:A \times B]^1}{\pi' d:B} f:B \to C}_{\frac{\pi d:A \times B}{Q} \supset R} \qquad \underbrace{\frac{[d:A \times B]^1}{\pi' d:B} f:B \to C}_{\frac{\pi d:A \times B}{Q} \supset R} \qquad \underbrace{\frac{[d:A \times B]^1}{\pi' d:B} f:B \to C}_{\frac{\pi d:A \times B}{Q} \supset R} \qquad \underbrace{\frac{[d:A \times B]^1}{\pi' d:B} f:B \to C}_{\frac{\pi d:A \times B}{Q} \supset R} \qquad \underbrace{\frac{[d:A \times B]^1}{\pi' d:B} f:B \to C}_{\frac{\pi d:A \times B}{Q} \supset R} \qquad \underbrace{\frac{[d:A \times B]^1}{\pi' d:B} f:B \to C}_{\frac{\pi d:A \times B}{Q} \supset R} \qquad \underbrace{\frac{[d:A \times B]^1}{\pi' d:B} f:B \to C}_{\frac{\pi d:A \times B}{Q} \supset R} \qquad \underbrace{\frac{[d:A \times B]^1}{\pi' d:B} f:B \to C}_{\frac{\pi d:A \times B}{Q} \supset R} \qquad \underbrace{\frac{[d:A \times B]^1}{\pi' d:B} f:B \to C}_{\frac{\pi d:A \times B}{Q} \supset R} \qquad \underbrace{\frac{[d:A \times B]^1}{\pi' d:B} f:B \to C}_{\frac{\pi d:A \times B}{Q} \supset R} \qquad \underbrace{\frac{[d:A \times B]^1}{\pi' d:B} f:B \to C}_{\frac{\pi d:A \times B}{Q} \supset R} \qquad \underbrace{\frac{[d:A \times B]^1}{\pi' d:B} f:B \to C}_{\frac{\pi d:A \times B}{Q} \supset R} \qquad \underbrace{\frac{[d:A \times B]^1}{\pi' d:B} f:B \to C}_{\frac{\pi d:A \times B}{Q} \supset R} \qquad \underbrace{\frac{[d:A \times B]^1}{\pi' d:B} f:B \to C}_{\frac{\pi d:A \times B}{Q} \supset R} \qquad \underbrace{\frac{[d:A \times B]^1}{\pi' d:B} f:B \to C}_{\frac{\pi d:A \times B}{Q} \supset R} \qquad \underbrace{\frac{[d:A \times B]^1}{\pi' d:B} f:B \to C}_{\frac{\pi d:A \times B}{Q} \supset R} \qquad \underbrace{\frac{[d:A \times B]^1}{\pi' d:B} f:B \to C}_{\frac{\pi d:A \times B}{Q} \supset R} \qquad \underbrace{\frac{[d:A \times B]^1}{\pi' d:B} f:B \to C}_{\frac{\pi d:A \times B}{Q} \supset R} \qquad \underbrace{\frac{[d:A \times B]^1}{\pi' d:B} f:B \to C}_{\frac{\pi d:A \times B}{Q} \supset R} \qquad \underbrace{\frac{[d:A \times B]^1}{\pi' d:B} f:B \to C}_{\frac{\pi d:A \times B}{Q} \supset R} \qquad \underbrace{\frac{[d:A \times B]^1}{\pi' d:B} f:B \to C}_{\frac{\pi d:A \times B}{Q} \supset R} \qquad \underbrace{\frac{[d:A \times B]^1}{\pi' d:B} f:B \to C}_{\frac{\pi d:A \times B}{Q} \supset R} \qquad \underbrace{\frac{[d:A \times B]^1}{\pi' d:B} f:B \to C}_{\frac{\pi d:A \times B}{Q} \supset R} \qquad \underbrace{\frac{[d:A \times B]^1}{\pi' d:B} f:B \to C}_{\frac{\pi d:A \times B}{Q} \supset R} \qquad \underbrace{\frac{[d:A \times B]^1}{\pi' d:B} f:B \to C}_{\frac{\pi d:A \times B}{Q} \supset R} \qquad \underbrace{\frac{[d:A \times B]^1}{\pi' d:B} f:B \to C}_{\frac{\pi d:A \times B}{Q} \supset R} \qquad \underbrace{\frac{[d:A \times B]^1}{\pi' d:B} f:B \to C}_{\frac{\pi d:A \times B}{Q} \supset R} \qquad \underbrace{\frac{[d:A \times B]^1}{\pi' d:B} f:B \to C}_{\frac{\pi d:A \times B}{Q} \supset R} \qquad \underbrace{\frac{[d:$$

As duas têm exatamente a mesma estrutura. Isto é um exemplo do Isomorfismo de Curry-Howard em funcionamento; ele diz que há uma bijeção natural entre derivações em Dedução Natural e termos de λ -cálculo simplesmente tipado. Repare que na árvore um λ -cálculo os termos sempre crescem à medida que descemos; se usamos uma nova notação — "downcased types" — podemos não só manter os termos pequenos, como suprimir os tipos — os tipos podem ser reconstruídos "convertendo para maiúsculas" os termos. Note que os "conectivos" também têm que ser convertidos: ',' convertido para maiúscula vira ' \times ', e ' \mapsto ' convertido para maiúscula vira ' \rightarrow '.

Agrora cada barra da árvore define um novo termo a partir de termos anteriores; isto gera o dicionário à direita... e a semântica de cada barra passa a ser: "se eu sei o significado dos termos acima da barra, eu sei o significado do termo abaixo da barra", ou: "se eu sei 'a' e sei 'a' e sei 'a', "se eu sei 'a

Os "termos" em DNC funcionam de um modo bem diferente dos termos de λ -cálculo. Em DNC nós permitimos nomes longos para variáveis (por exemplo, 'a,b'), a distinção sintática entre variáveis e termos não-primitivos não existe, e, aliás, sem o dicionário não é nem possível determinar só pelos nomes de dois termos qual é "mais primitivo" que o outro: por exemplo, $b \mapsto c$ é mais primitivo que c mas $a, b \mapsto a, c$ é menos primitivo que a, c.

Preamble: DGs and topologies

A directed graph is a set of worlds, W, and a relation $R \subseteq W \times W$.

Important fact:
DGs induce topologies,
topologies induce DGs,

and in the finite case (which is what matters to us) the correspondence $\mathbf{DG} \leftrightarrows \mathbf{Top}$ is especially well-behaved.

This will be our archetypical DAG:

$$\mathbb{V} := (W, R) := (\{\alpha, \beta, \gamma\}, \{\alpha \to \gamma, \beta \to \gamma\})$$

$$\alpha \qquad \beta$$

$$\mathbb{V} \quad \equiv \quad \begin{array}{c} \alpha \\ \gamma \end{array} \qquad \begin{array}{c} \beta \\ \end{array}$$

This will be the topological space induced by \mathbb{V} :

$$(\mathbb{V}, \mathcal{O}(\mathbb{V})) := (\{\alpha, \beta, \gamma\}, \{\emptyset, \{\gamma\}, \{\alpha, \gamma\}, \{\beta, \gamma\}, \{\alpha, \beta, \gamma\}\})$$

We will use the correspondence mainly to represent finite topological spaces by their associated DGs (or DAGs).

Preamble: each DG induces a topology

A function $f: W \to \{0,1\}$ is "non-decreasing (on R)" when all arrows in R are "non-decreasing".

$$\mathbb{V} := (W, R) := (\{\alpha, \beta, \gamma\}, \{\alpha \to \gamma, \beta \to \gamma\})$$

$$\mathbb{V} \quad \equiv \quad \begin{array}{c} \alpha \\ \gamma \end{array} \qquad \begin{array}{c} \beta \\ \end{array}$$

 $\overset{10}{_{0}}$ decreases on the arrow $\alpha \rightarrow \gamma \colon f(\alpha \rightarrow \gamma) = 1 \rightarrow 0.$

 $_{0}^{0.1}$ decreases on $\beta \rightarrow \gamma$.

 $_{0}^{11}$ decreases on both $\alpha \to \gamma$ and $\beta \to \gamma$.

The non-decreasing functions $\mathbb{V} \to \{0,1\}$ are 00 , 00 , 01 , 11 , 11 , 11 .

A "non-decreasing subset" $W' \subseteq W$ is one whose

characteristic function is non-decreasing (on R).

Definition:

$$Nondecr(W, R) := \{ W' \subseteq W \mid W' \text{ is non-decreasing on } R \}$$

For a DG $\mathbb{D} := (W, R)$ the induced topological space is:

$$(\mathbb{D}, \mathcal{O}(\mathbb{D})) := (W, \mathcal{O}(\mathbb{D})) := (W, \text{Nondecr}(W, R))$$

For the dag \mathbb{V} above, this is:

$$(\mathbb{V}, \mathcal{O}(\mathbb{V})) := (\{\alpha, \beta, \gamma\}, \{\emptyset, \{\gamma\}, \{\alpha, \gamma\}, \{\beta, \gamma\}, \{\alpha, \beta, \gamma\}\})$$

Fact: topologies induced by DGs are closed by arbitrary intersections of open sets — not just by finite intersections.

Preamble: truth-values

Abuse of language:

We will often write subsets of W (non-decreasing or not) as if they were the corresponding functions $W \to \{0,1\}$. So, for example:

$$\{\beta, \gamma\} \equiv {}^{01}_{1},$$
 $\mathcal{O}(\mathbb{V}) = \text{Nondecr}(\mathbb{V}) \equiv \{{}^{00}_{0}, {}^{00}_{1}, {}^{01}_{1}, {}^{10}_{1}, {}^{11}_{1}\}.$

Terminology:

A function $W \to \{0,1\}$ is a "modal truth-value".

A non-decreasing function $W \to \{0,1\}$ is an "intuitionistic truth-value". We will see later that the modal truth-values live in a category \mathbf{Set}^W and that the intuitionistic truth-values live in a category $\mathbf{Set}^{\mathbb{D}}$.

Big fact: we can interpret propositional logic on modal truth-values... just operate on each world separately, e.g.: ${}^{01}_{1} \wedge {}^{10}_{1} = {}^{00}_{1}$. On modal truth-values the "logic" is boolean but not two-valued.

Bigger fact: the intuitionistic truth-values on a DAG \mathbb{D} form a "Heyting algebra", $\mathcal{O}(\mathbb{D})$ — we can interpret propositional logic there, but it will be *intuitionistic* — we can't prove $\neg\neg P \supset P$ there because that is not always true: take $P := {}^{0.0}_{-1}$, then $\neg\neg P \equiv {}^{1.1}_{-1}$.

Mind-blowing fact: the notion of "taking the union of all open sets in a given cover" can be interpreted as a *new logical operation*, obeying some axioms: namely, $\top^* = \top$, $P^{**} = P^*$, $P^* \wedge Q^* = (P \wedge Q)^*$. This "taking the union..." operation is a particular case of something much more general: Lawvere-Tierney topologies, that generalize both **sheaves** and **forcing**.

We can understand sheaves through logic.

Tiny, but amazing, fact: we can understand all these ideas from the cases of the DAGs $\mathbb{V} \equiv \stackrel{\bullet}{\bullet}$ and $\mathcal{O}(\mathbb{V})^{\mathrm{op}} \equiv \stackrel{\bullet}{\bullet}$, and then generalizing. This tiny & amazing fact — that in a sense is trivial, and is little more than working out in full detail a few chosen exercises from topos theory books — is the guiding thread for these notes.

Topological spaces

A topological space is a pair $(X, \mathcal{O}(X))$ where $\mathcal{O}(X) \subset \mathcal{P}(X)$ is a topology on the set X:

(i) $X \in \mathcal{O}(X)$, $\emptyset \in \mathcal{O}(X)$,

- (ii) $\mathcal{O}(X)$ is closed by arbitrary unions,
- (iii) $\mathcal{O}(X)$ is closed by finite intersections.

Sometimes an $\mathcal{O}(X)$ is closed by **arbitrary intersections**...

This happens for $(\mathbb{V}, \mathcal{O}(\mathbb{V}))$ and for $(\mathbb{R}, \mathcal{P}(\mathbb{R}))$, but not for $(\mathbb{R}, \mathcal{O}(\mathbb{R}))$.

When this happens we say that $\mathcal{O}(X)$ is an Alexandroff topology, and that $(X, \mathcal{O}(X))$ is an Alexandroff space.

We will refer to these things by more mnemonic names:

 $\mathcal{O}(X)$ is a "topcai", $(X, \mathcal{O}(X))$ is a "topcai space".

There is an inclusion of categories - a functor:

$$\mathbf{TopCAI} \rightarrowtail \mathbf{Top}$$

and we can take a topology $\mathcal{O}(X)$ and look at the set of arbitrary intersections of its open sets, $\bigcap_{\infty} \mathcal{O}(X)$ - it turns out that $\bigcap_{\infty} \mathcal{O}(X)$ is closed by arbitrary unions, and is a topology - actually a topcai.

This operation - "closing by arbitrary intersections" - is a functor:

$$\begin{array}{cccc} \operatorname{cai}: & \mathbf{Top} & \to & \mathbf{TopCAI} \\ & (X, \mathcal{O}(X)) & \mapsto & (X, \bigcap_{\infty} \mathcal{O}(X)) \end{array}$$

and there is an adjunction $(\rightarrow) \dashv cai$.

(**TopCAI** is a "coreflective subcategory" of **Top** - the inclusion funtor (\rightarrowtail) has a right adjoint).

Note that its counit on $(\mathbb{R}, \mathcal{O}(\mathbb{R}))$ is the continuous map "id" : $(\mathbb{R}, \mathcal{P}(\mathbb{R})) \to (\mathbb{R}, \mathcal{O}(\mathbb{R}))$:

$$(X, \mathcal{O}(X)) \longleftarrow (X, \mathcal{O}(X)) \qquad (\mathbb{R}, \mathcal{P}(\mathbb{R})) \longleftarrow (\mathbb{R}, \mathcal{P}(\mathbb{R}))$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \text{id}$$

$$(Y, \mathcal{O}(Y)) \longmapsto_{\mathsf{cai}} (Y, \bigcap_{\infty} \mathcal{O}(Y)) \qquad (\mathbb{R}, \mathcal{O}(\mathbb{R})) \longmapsto_{\mathsf{cai}} (\mathbb{R}, \mathcal{P}(\mathbb{R}))$$

$$\mathsf{Top} \xrightarrow[\mathsf{cai}]{\mathsf{cai}} \mathsf{TopCAI} \qquad \mathsf{Top} \xrightarrow[\mathsf{cai}]{\mathsf{cai}} \mathsf{TopCAI}$$

Preorders and partial orders

A preorder on W is a relation $(\leq) \subset W \times W$ that is:

(i) reflexive: $a \leq a$

(ii) transitive: if $a \le b$ and $b \le c$, then $a \le c$.

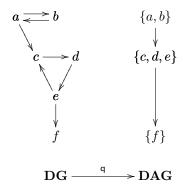
A partial order is a preorder that is also:

(iii) anti-symmetric: if $a \leq b$ and $b \leq a$, then a = b.

A directed graph (W,R) induces a preorder $(W,\leq):=(W,R^*)...$ Mnemonic: the '*' is a Kleene star: if $aRa_1Ra_2Ra_3Rb$ then aR^4b , and thus aR^*b ; " R^* " means "at least zero 'R's". More formally: $R^*:=R^0\cup R^1\cup R^2\cup R^3\cup ...$, the reflexive/transitive closure of R. $(R^0$ is the diagonal — aR^0b iff a=b).

Each cycle in a DG (W, R) becomes a set of "equivalent elements" in the induced preorder Let's consider just DAGs for a while. DAGs induce partial orders — aciclicity leads to antisymmetry.

A DG can be converted to a DAG by identifying the elements in each cycle:



It turns out that the inclusions $\mathbf{DG}^* \to \mathbf{DG}$ and $\mathbf{DAG}^* \to \mathbf{DAG}$ have left adjoints: in both cases, $*\dashv (\rightarrowtail)$, and the units of the adjunctions take a DG or DAG (W,R) to its reflexive and transitive closure.

Also, the inclusion $\mathbf{DAG}^* \rightarrow \mathbf{DG}^*$ have a left adjoint: 'q'.

The minimal DAG for a topology

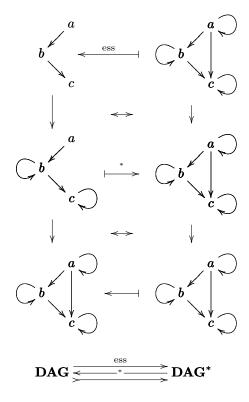
Each DG $\mathbb{D}=(W,R)$ induces a topcai: $(W,\operatorname{Nondecr}(R))$ -but several DGs induce the same topcai.

One canonical way to represent a topcai by a DG is to pick the associated DG* - it is the maximal DG generating that topcai.

For finite DAGs - i.e., for finite T_0 topological spaces - there is also a minimal DAG generating that topology... The process to obtain it is to drop all the arrows that are not "essential".

Here's an example:

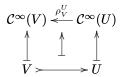
(by the way: ess $\dashv * \dashv (\leftarrow)$)



(The moral is that there is something canonical about representing topologies (T_0 , and on finite sets) by DAGs with very few arrows)

Presheaves

A presheaf on $(X, \mathcal{O}(X))$ is a (contravariant) functor $\mathcal{O}(X)^{\mathrm{op}} \to \mathbf{Set}$. A sheaf is a presheaf obeying a "glueing condition", that we will see later. Example: $\mathcal{C}^{\infty} : \mathcal{O}(\mathbb{R})^{\mathrm{op}} \to \mathbf{Set}$. If $V \subset U$, then:



The map $\rho_V^U:=\mathcal{C}^\infty(V\rightarrowtail U)$ is called the "restriction function".

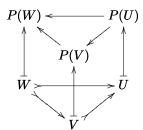
We will borrow some terminology from the case of functions defined over open sets: for a presheaf $P: \mathcal{O}(X)^{\mathrm{op}} \to \mathbf{Set}$ and $W \subseteq V \subseteq U$,

$$\begin{array}{ccc} p_U \in P(U) & \text{a "function/element with support U"} \\ p_X \in P(X) & \text{a "global function/element"} \\ \rho_V^U : P(U) \to P(V) & \text{"restriction function"} \\ (\rho_V^U := P(V \rightarrowtail U)) & \end{array}$$

Functoriality means two conditions on restriction maps:

$$P(U \rightarrowtail U) = \mathrm{id}_{P(U)}$$

$$P(W \rightarrowtail V) \circ P(V \rightarrowtail U) = P(W \rightarrowtail U)$$



A subtopology of \mathbb{R}

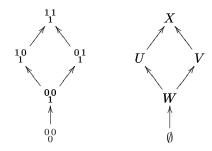
The topology on the DAG $\mathbb V$ can be seen as a subtopology of $\mathbb R$... Consider the quotient q below, or, equivalently, q':

$$\begin{array}{l} q: \mathbb{R} \rightarrow \{(-\infty,0],\, (0,1),\, [1,\infty)\} \\ q': \mathbb{R} \rightarrow \{\alpha,\gamma,\beta\} \end{array}$$

 $q'^{-1}(\mathcal{P}(\{\alpha,\gamma,\beta\})) \subset \mathcal{P}(\mathbb{R})$ is a topology on \mathbb{R} with 8 open sets. $q'^{-1}(\mathcal{P}(\{\alpha,\gamma,\beta\})) \cap \mathcal{O}(\mathbb{R}) \subset \mathcal{O}(\mathbb{R}) \subset \mathcal{P}(\mathbb{R})$ is a topology on \mathbb{R} with 5 open sets. Compare:



We will refer to these open sets as X, U, V, W, \emptyset :



Note that U will sometimes mean a specific open set - $\frac{10}{1}$ -, sometimes an arbitrary open set; same for the other letters.

Coherent families

Now let $X := \mathbb{R}$, and let's consider two functions defined on subsets of X:

 $x_U: \quad U \quad \to \quad \mathbb{R}$ $\quad x \quad \mapsto \quad x$ $0_U: \quad U \quad \to \quad \mathbb{R}$

 $\begin{array}{ccc} x & \mapsto & 0 \\ \text{(I.e., we're defining } x_X, x_U, x_V, x_W, x_\emptyset, \\ 0_X, 0_U, 0_V, 0_W, 0_\emptyset). \end{array}$

We can also consider families of functions, whose supports are families of open sets - $\{x_U, x_V\}$ and $\{x_U, 0_V\}$ are families with support $\{U, V\}$. Note: $\{x_U, x_V 0_V\}$ is not a family with support $\{U, V\}$ because V has two "images": x_V and 0_V .

A function defined on U - say, x_U - induces a family $\{x_U\}$ defined on $\{U\}$, i.e., on $\begin{smallmatrix} 0 \\ 10 \\ 0 \end{smallmatrix}$ - and another family, $\{x_U, x_W, x_\emptyset, \}$, defined on all open sets under U - i.e., on the saturation of $\{U\} = \begin{smallmatrix} 0 \\ 10 \\ 0 \end{smallmatrix}$, which is $\begin{smallmatrix} 0 \\ 10 \\ 1 \end{smallmatrix}$.

When we try to extend the family $\{x_U,0_V\}$ to the saturation of $\begin{smallmatrix} 0\\1\\0\\0 \end{smallmatrix}$, i.e., to $\begin{smallmatrix} 0\\1\\1\\1 \end{smallmatrix}$, we see that we get two different candidates for W - $x_W \neq 0_W$ - which is not good...

A family is said to be *coherent* when its extension to the saturation of its support is well-defined. $\{x_U, x_V\}$ is coherent, $\{x_U, 0_V\}$ is not. Here's a way to define formally coherence for families: a family $a_{\mathcal{U}}$ is coherent iff $\forall a_U, a_V \in a_{\mathcal{U}} \ a_U|_{U \cap V} = a_V|_{U \cap V}$. Note that $\{x_U, 0_V, 0_W\}$ is not coherent.

Saturation and bisaturation

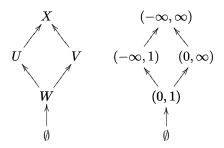
Notation: the calligraphic letters $\mathcal{U}, \mathcal{V}, \mathcal{W}$ will denote families of open sets, and the annotations '°', '•', '••' will indicate how saturated a family is - \mathcal{U} °: not necessarily saturated

 \mathcal{U}^{\bullet} : saturated $\mathcal{U}^{\bullet \bullet}$: bisaturated

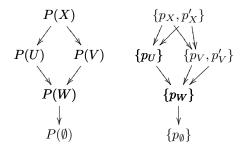
We will sometimes use \bullet , $\bullet \bullet$ to denote operations:

 \bullet is "saturate", $\bullet \bullet$ is "bisaturate".

A (bad) presheaf on a DAG



Here is a presheaf over $(X, \mathcal{O}(X))$ ("P") that is not a sheaf - it violates the two sheaf conditions. P is not collated - because $\{p_U, p_{V'}\}$ is a coherent family (on $\{U, V\}$) that cannot be collated to a global function. P is not separated - because there are two different collations for $\{p_U, p_V\}$.

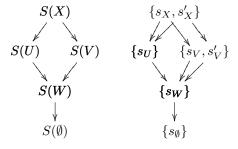


A presheaf on a DAG: its space of germs

Its space of germs is built like this: for each point in X - i.e., for α, β, γ ; let's look at α - look at all open sets containing α (namely: $U = \{\alpha, \gamma\}, X = \{\alpha, \beta, \gamma\}$) and take the colimit of P on these open sets as they get smaller and smaller. As there is a smallest open set containing α - and β , and γ - these colimits/germs are very easy to calculate:

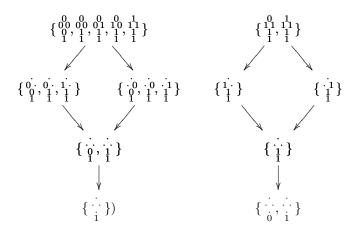
The projection map $E \to X$ is the obvious one. We need to put a topology to E; it turns out (why?) that the right topology is the one induced by the obvious graph. Now this induces a sheaf of sections...

(I am skipping some steps -)



Dense and stable truth-values

At the left below we see the representation as a presheaf of the "••-stable truth-values", $\{\omega \mid \omega^{\bullet \bullet} = \omega\} \subset \Omega$; It is a sheaf, and it can be recovered from its "global elements".



At the right above we see the representation as a presheaf of the "••-dense truth-values", $\Omega_{\bullet\bullet}:=\{\omega\mid\omega^{\bullet\bullet}=\top\}\subset\Omega$. It is not a sheaf, it can't be recovered from its "global elements" as $\{\omega\mid\omega^{\bullet\bullet}=\omega\}$ can; yet - and I have to admit that I found that very surprising - we can recover the modality from the subobject $\Omega_{\bullet\bullet}\rightarrowtail\Omega$, by:

 $\omega^{\bullet \bullet} := \omega \in \Omega_{\bullet \bullet}$

Substitution principles for '⇔'

We will also use the following "substitution principles": if P, Q, Q', R, R' are formulas, and R' is obtained from R by replacing some occurrences of Q in it by Q', then

$$\frac{P \vdash Q \Leftrightarrow Q'}{P \vdash R \Leftrightarrow R'} \qquad \frac{P \vdash Q \Leftrightarrow Q' \quad P \vdash R}{P \vdash R'}$$

The "theorems" above - and the ones in the following slides - can be proved using just the sequent calculus rules for intuitionistic propositional logic augmented with the three axioms for '*'.

To make the proofs more manageable we will often make use of the "' \Leftrightarrow ' trick": starting from $P \vdash Q \Leftrightarrow Q'$ and a proof of $P \vdash R$ we can produce a proof of $P \vdash R'$, where R' is R with some occurrences of 'Q' replaced by 'Q''s.

Example:

 (\dots)

To prove these first theorems — and the ones in the next slides — we will need some facts about the biconditional, '⇔', that is defined as:

$$P \Leftrightarrow Q := (P \supset Q) \land (Q \supset P)$$

Lawvere-Tierney Modalities

A (Lawvere-Tierney) modality is an operation '*' on intuitionistic truth-values obeing the following three axioms:

$$\frac{P \vdash Q}{P^* \vdash Q^*} \qquad \frac{P^{**} \vdash P^*}{P^{**} \vdash P^*}$$

The supersaturation operation, $P^* := P^{\bullet \bullet}$, is an example of an LT-modality — but there are others:

$$\begin{split} P^* &:= P^{\neg \neg} := \neg \neg P \\ P^* &:= P^{(\alpha \vee)} := \alpha \vee P \\ P^* &:= P^{(\beta \supset)} := \beta \supset P \end{split}$$

$$P^* := P^{(\beta \supset)} := \beta \supset P$$

First theorems:

$$P \vdash P^*$$

$$(P \wedge Q)^* \vdash P^* \wedge Q^*$$

$$P \wedge Q^* \vdash (P \wedge Q)^*$$

$$P^* \wedge Q^* \vdash (P \wedge Q)^*$$

From what we already have, we can prove that $P \Leftrightarrow Q$ implies $P^* \Leftrightarrow Q^*$ in a weak sense:

$$\begin{array}{c} \vdash P \Leftrightarrow Q \\ \hline \vdash P \supset Q \\ \hline P \vdash Q \\ \hline P^* \vdash Q^* \\ \hline \vdash P^* \supset Q^* \end{array} \begin{array}{c} \vdash P \Leftrightarrow Q \\ \hline \vdash Q \supset P \\ \hline Q \vdash P \\ \hline Q^* \vdash P^* \\ \hline \vdash Q^* \supset P^* \\ \hline \vdash Q^* \supset P^* \\ \hline \end{array}$$

But there isn't much that we can do when $P \Leftrightarrow Q$ is weaker than $\top \dots$ For example, if $P := {}^{01}_{1}$ and $Q := {}^{10}_{1}$, then $P \Leftrightarrow Q = {}^{00}_{1}$.

We will treat this as an axiom:

$$\overline{P \Leftrightarrow Q \vdash P^* \Leftrightarrow Q^*}$$

(Actually this is true for any unary operation on truth-values of a Heyting algebra).

LT-modalities and 'and'

Theorems:

$$P \vdash P^*$$
$$(P \land Q)^* \vdash P^* \land Q^*$$
$$P \land Q^* \vdash (P \land Q)^*$$
$$P^* \land Q^* \vdash (P \land Q)^*$$

Proofs:

$$\frac{P \vdash T \Leftrightarrow P}{P \vdash T \Leftrightarrow P}$$

$$\frac{P \vdash T \Leftrightarrow P^*}{P \vdash P^*}$$

$$\frac{P \vdash Q \Leftrightarrow (P \land Q)}{P \vdash Q}$$

$$\frac{P \land Q \vdash P}{(P \land Q)^* \vdash P^*} \cdot \frac{P \land Q \vdash Q}{(P \land Q)^* \vdash Q^*} \cdot \frac{P \vdash Q \Leftrightarrow (P \land Q)^*}{P \vdash Q^* \Leftrightarrow (P \land Q)^*}$$

$$\frac{P \vdash Q \Leftrightarrow (P \land Q)}{P \vdash Q^* \Leftrightarrow (P \land Q)^*}$$

$$\frac{P \vdash Q \Leftrightarrow (P \land Q)}{P \vdash Q^* \Leftrightarrow (P \land Q)^*}$$

$$\frac{P \vdash Q \Leftrightarrow (P \land Q)}{P \vdash Q^* \Leftrightarrow (P \land Q)^*}$$

$$\frac{P \vdash Q \Leftrightarrow (P \land Q)^*}{P \land Q^* \vdash (P \land Q)^*}$$

$$\frac{P \vdash Q \Leftrightarrow (P \land Q)^*}{P \vdash Q^* \Leftrightarrow (P \land Q)^*}$$

$$\frac{P \vdash Q \Leftrightarrow (P \land Q)^*}{P \vdash Q^* \Leftrightarrow (P \land Q)^*}$$

$$\frac{P \vdash Q \Leftrightarrow (P \land Q)^*}{P \vdash Q^* \Leftrightarrow (P \land Q)^*}$$

$$\frac{P \vdash Q \Leftrightarrow (P \land Q)^*}{P \vdash Q^* \Leftrightarrow (P \land Q)^*}$$

$$\frac{P \vdash Q \Leftrightarrow (P \land Q)^*}{P \vdash Q^* \Leftrightarrow (P \land Q)^*}$$

$$\frac{P \vdash Q \Leftrightarrow (P \land Q)^*}{P \vdash Q^* \Leftrightarrow (P \land Q)^*}$$

$$\frac{P \vdash Q \Leftrightarrow (P \land Q)^*}{P \vdash Q^* \Leftrightarrow (P \land Q)^*}$$

$$\frac{P \vdash Q \Leftrightarrow (P \land Q)^*}{P \vdash Q^* \Leftrightarrow (P \land Q)^*}$$

$$\frac{P \vdash Q \Leftrightarrow (P \land Q)^*}{P \vdash Q^* \Leftrightarrow (P \land Q)^*}$$

$$\frac{P \vdash Q \Leftrightarrow (P \land Q)^*}{P \vdash Q^* \Leftrightarrow (P \land Q)^*}$$

$$\frac{P \vdash Q \Leftrightarrow (P \land Q)^*}{P \vdash Q^* \Leftrightarrow (P \land Q)^*}$$

$$\frac{P \vdash Q \Leftrightarrow (P \land Q)^*}{P \vdash Q^* \Leftrightarrow (P \land Q)^*}$$

$$\frac{P \vdash Q \Leftrightarrow (P \land Q)^*}{P \vdash Q^* \Leftrightarrow (P \land Q)^*}$$

$$\frac{P \vdash Q \Leftrightarrow (P \land Q)^*}{P \vdash Q^* \Leftrightarrow (P \land Q)^*}$$

$$\frac{P \vdash Q \Leftrightarrow (P \land Q)^*}{P \land Q^* \vdash (P \land Q)^*}$$

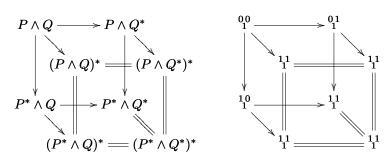
$$\frac{P \vdash Q \Leftrightarrow (P \land Q)^*}{P \land Q^* \vdash (P \land Q)^*}$$

$$\frac{P \vdash Q \Leftrightarrow (P \land Q)^*}{P \land Q^* \vdash (P \land Q)^*}$$

$$\frac{P \vdash Q \Leftrightarrow (P \land Q)^*}{P \land Q^* \vdash (P \land Q)^*}$$

$$\frac{P \vdash Q \Leftrightarrow (P \land Q)^*}{P \land Q^* \vdash (P \land Q)^*}$$

The cube of modalities for ' \wedge ' has only four different truth-values (the case $P^* := P^{\neg \neg}$, $P = {}^{0}_{1}^{1}$, $Q = {}^{1}_{1}^{0}$ shows that they are all distinct):

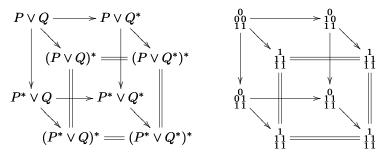


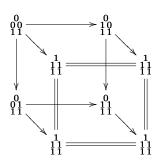
LT-modalities and 'or'

Theorems:

$$\frac{\overline{P \vdash P \lor Q}}{P^* \vdash (P \lor Q)^*} \quad \frac{\overline{Q \vdash P \lor Q}}{Q^* \vdash (P \lor Q)^*} \qquad \frac{\overline{P^* \lor Q^* \vdash (P \lor Q)^*}}{(P^* \lor Q^*)^* \vdash (P \lor Q)^{**}} \\ \overline{P^* \lor Q^* \vdash (P \lor Q)^*} \qquad \overline{(P^* \lor Q^*)^* \vdash (P \lor Q)^*}$$

The cube of modalities for 'V' has only five different truth-values (the case $P^*:=P^{\neg\neg},\ P=\stackrel{0}{\underset{10}{0}},\ Q=\stackrel{0}{\underset{10}{0}}$ shows that they are all distinct):



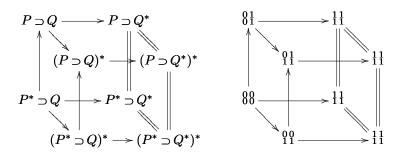


LT-modalities and implication

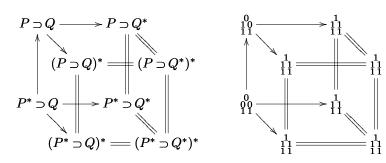
Theorems:

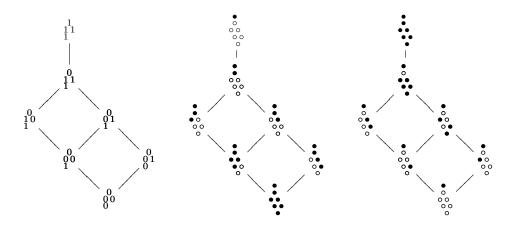
$$\frac{\overline{(P \supset Q) \land P \vdash Q}}{\overline{((P \supset Q) \land P)^* \vdash Q^*}} \\ \frac{\overline{(P \supset Q) \land P)^* \vdash Q^*}}{\overline{(P \supset Q)^* \land P^* \vdash Q^*}} \\ \overline{(P \supset Q)^* \vdash P^* \supset Q^*} \\ \\ \frac{\overline{(P \supset Q)^* \vdash P^* \supset Q^*}}{\overline{P^* \land (P \supset Q)^* \vdash Q^*}} \\ \overline{P^* \land (P \supset Q)^* \vdash Q^*} \\ \overline{P^* \land (P \supset Q^*)^* \vdash Q^*} \\ \overline{P^* \land (P \supset Q^*)^* \vdash Q^*} \\ \overline{P^* \land (P \supset Q^*)^* \vdash P^* \supset Q^*}$$

The cube of modalities for ' \supset ' has only five different truth-values. The case $P^* := \overset{0}{1}\overset{0}{1} \vee P$, $P = \overset{0}{1}\overset{0}{0}$, $Q = \overset{0}{0}\overset{0}{0}$ distinguishes them all:



When the modality is $P^* := \neg \neg P$ we can't distinguish the four truth-values in the front face of the cube (the ' $(P^? \supset Q^?)^*$'s)... The best that we can do is this. For $P^* := \neg \neg P$, $P = \begin{smallmatrix} 0 \\ 0 \\ 0 \end{smallmatrix}$, $Q = \begin{smallmatrix} 0 \\ 0 \\ 0 \end{smallmatrix}$,





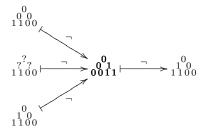
More about double negation

The value of $\neg \neg P$ depends only on the values of P on the terminal worlds (the "leaves").

How to see this:

 $\neg P$ is the opposite of P at the leaf-worlds and is the biggest possible (i.e., as 1-ish as possible) in the other worlds:

 $\neg\neg P$ coincides with P at the leaf-worlds and is the biggest possible in the other worlds.



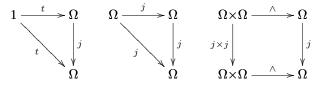
Let's write (temporarily) '?' for "apply '*' or not". $P^? \wedge Q^?$ stands for: $P \wedge Q, P \wedge Q^*, P^* \wedge Q, P^* \wedge Q^*$ — four truth-values.

Fact: when $*=\neg\neg$, $(P^? \wedge Q^?)^*$ is well-defined, $(P^? \vee Q^?)^*$ is well-defined, $(P^? \supset Q^?)^*$ is well-defined, $(\neg P)^*$ is well-defined — the outer '*' dominates everything and makes all inner applications of '*'s irrelevant.

In the cubes from the previous slides, "the outer '*' dominates" means: "the four truth-values in the front face — the ' $(P^?$ op $Q^?)$ *'s — are all equivalent". This is not true for the modality $P^* = P^{(\alpha \vee)} = \alpha \vee P!$

Modalities: alternative axioms

A Lawvere-Tierney topology is usually defined as an arrow $j:\Omega\to\Omega$ such that these three diagrams commute:



Which means:

$$\omega[\top] = \omega[\top^*] \qquad \omega[P^*] = \omega[P^{**}] \qquad \omega[P^* \wedge Q^*] = \omega[(P \wedge Q)^*]$$

$$\overline{\top \vdash \top^*} \qquad \overline{P^* \vdash P^{**}} \qquad \overline{P^{**} \vdash P^*}$$

$$\overline{P^* \wedge Q^* \vdash (P \wedge Q)^*} \qquad \overline{(P \wedge Q)^* \vdash P^* \wedge Q^*}$$

It is not clear that these axioms ("LT axioms") are equivalent to the three axioms ("LT-modality axioms") that we were using before...

We know that the modality axioms imply all the LT axioms, but it is not obvious that the modality axioms $\top \vdash \top^*$

and
$$\frac{P \vdash Q}{P^* \vdash Q^*}$$

can be proved from the LT axioms...

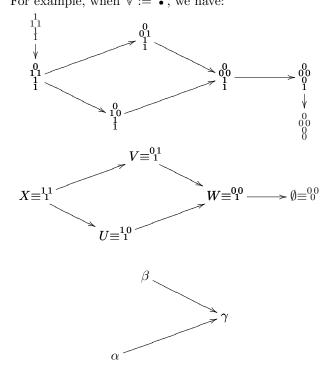
Here are the proofs:

$$\begin{array}{c} P \vdash Q \\ \hline T \vdash P \supset Q \\ \hline \hline P \vdash T \Leftrightarrow P \\ \hline P \vdash T \Leftrightarrow P^* \\ \hline P \vdash T \Leftrightarrow P^* \\ \hline P \vdash P^* \\ \end{array} \qquad \begin{array}{c} \hline T \vdash P \Leftrightarrow (P \land Q) \\ \hline \hline T \vdash P^* \Leftrightarrow (P^* \land Q^*) \\ \hline \hline \hline P \vdash Q^* \\ \hline \end{array}$$

LT-modalities and the quantifiers Quantifiers:

The fibration of saturated covers

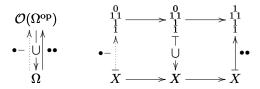
For a DAG \mathbb{D} , define $\mathbb{D}' := \mathcal{O}(\mathbb{D})^{\mathrm{op}} \equiv (\mathcal{O}(\mathbb{D}), \supseteq)$. For example, when $\mathbb{V} := \stackrel{\bullet}{\bullet}$, we have:



The projection $\bigcup : \mathcal{O}(\Omega^{\text{op}}) \to \Omega$ respects \wedge and \vee , i.e., if $\bigcup \mathcal{U}^{\bullet} = U$ and $\bigcup \mathcal{V}^{\bullet} = V$ then $\bigcup (\mathcal{U}^{\bullet} \vee \mathcal{V}^{\bullet}) = U \vee V$ (this is easy to see), and also $\bigcup (\mathcal{U}^{\bullet} \wedge \mathcal{V}^{\bullet}) = U \wedge V$ (look at each $w \in \bigcup (\mathcal{U}^{\bullet} \wedge \mathcal{V}^{\bullet})$).

Each fiber $\bigcup^{-1} U$ is a lattice with top element $\mathcal{U}^{\bullet \bullet}$. When Ω comes from a finite topology we can take the intersection of all saturated covers of U, and this gives a minimal saturated cover for U, that we will call $\mathcal{U}^{\bullet -}$.

Fact: $\bullet - \dashv \bigcup \dashv \bullet \bullet$.



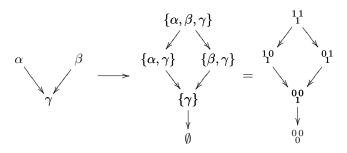
Embedding

A topology is a DAG in a natural way: if $V, U \in \mathcal{O}(X)$, then $V \to U$ iff $V \subseteq U$.

We will prefer $\mathcal{O}(X)^{\text{op}}$ rather than $\mathcal{O}(X)$, for two

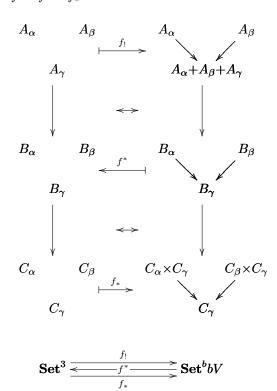
reasons: one is because then we will have a monotonic function

$$\downarrow: \quad \mathbb{D} \quad \to \quad \mathcal{O}(\mathbb{D})^{\mathrm{op}}$$
$$\alpha \quad \mapsto \quad \bot \alpha$$



Geometric morphisms

The obvious continuous function $f: 3 \to \mathbb{V}$ induces a geometric morphism, $(f^* \dashv f_*) : \mathbf{Set}^3 \to \mathbf{Set}^V$. It is essential: $f! \dashv f^* \dashv f_*$.



A simpler example:

$$(A, A') \stackrel{g_!}{\longmapsto} (A + A', 0)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$(B, B') \stackrel{g^*}{\longleftarrow} (B, B)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$(C, C') \stackrel{g_*}{\longmapsto} (C \times C', 1)$$

$$\mathbf{Set}^2 \stackrel{g_!}{\longleftarrow} \mathbf{Set}^2$$