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Natural Deduction and Sequent Calculus

[P&Q)]!
[P&Q]! Q Q>R
P R
PGR
P&O > P&R ©

P&Q + P&Q
P&QF P&Q P&QFQ Q-RFQ-SR
P&Q+ P Qo R,P&QF R
Q> R, P&Q+ P&R
Qo Rt P&Q > P&R
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Heyting Algebras
A Heyting Algebra is a 7-uple
(Q,T,L,A,V,o,F), where:

T,L € Q,
AV,D 0 OxQ—Q,
F C Q

and the relation F respects the following “derivation rules”:
PAQ<P

SN T T

T
Q<+QAR—>R T R=>QoR

T

P

P—=PVvQR-<HQ

ANV

R

PFQ QFR
PFR PFP

PFQ PFR PAQFR

PFQAR QARFQ QARFR PHT PFQDR(D

PFR QFR
PVQFR PFPVQ QFPVQ LFP

Here are three Heyting Algebras:

1 111 1
/TN o N\,
110 101 011 1

X N

100 010 001

N1 !

0 000

Note: consider the partial order induced by the DAGs above -
i.e., the reflexive/transitive closure of the DAGs.
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Some DAGs are Heyting Algebras
Theorem: if

(Q,T,L,A,V,o,F) and

(Q, T, L' N, V' 2 ) are Heyting Algebras, then
we have

T T,

11,

and for any P,Q € €,

PAQ+— PNQ,

PVQ«— PV Q,

PoQ«— P2Q.

Proof (half of it):

THET Lk

PPV Q QFPV'Q PPV Q QFPVQ
PVQEPVQ PVQrFPV Q

P>QFP>oQ

(PoQ)&'PH(P>Q)&P (Po>Q)&PHQ
(PoQ@Q)&'PHQ
PoQFPIQ

Theorem: if

(Q,T,L,A,V,oF) and

(Q, T, L', N, V' 2 ) are Heyting Algebras and
(Q,F) is a DAG, then

T=T,L=1" " A=N, V=V, o>=H.

So, if a DAG (,1) is Heyting Algebra,

then it is a Heyting Algebra in a unique way:

T, L1,A,V,> are well-defined.

Amazing fact:

For any topological space (X, O(X)),
the DAG (O(X), Q) is a Heyting Algebra.
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Calculating V o W
What is V o W?
Idea: look at all Us such that U&V F W.

TNV =——17

IR e T

Wi— VoW Wi— VoW Wi— VoW

0
In O(V), this works for these open sets: 1.
1

Define V o W as the greatest of them.
More formally:

VoW :=sup{U |U&V FW}
VoW =J{U|U&V W}
VoW =J{U|UNVCW}
VoW = {A°|A°NVCW}
VoW:=J{A°|A°CWUX\V)}
VoW:=(WuU((X\V))°
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“Mundo funcional” e “Mundo 16gico” (Curry-Howard)

Compare a prova abaixo a esquerda, em Deducao Natural, de que @Q > R
implica P A Q@ > P A R, com a constru¢ao do termo Ad:AxB.(nd, f(7'd)) :
(AxB — AxC) em A-cdlculo simplesmente tipado:

[PAQ]! [d:Ax B]!
[P AQ) Q QoR [d:Ax B]* m'd:B  f:B—C
P R md:A f(n'd):C
PAR (md, f(n'd)):AxC
(PAOSPAR) . N:AxB.(rd, f(wd)) : AxB — AxC *

As duas tém exatamente a mesma estrutura. Isto é um exemplo do Isomor-
fismo de Curry-Howard em funcionamento; ele diz que ha uma bijegao natural
entre derivagoes em Dedugao Natural e termos de A-calculo simplesmente tipado.
Repare que na arvore um A-célculo os termos sempre crescem a medida que de-
scemos; se usamos uma nova notacao — “downcased types” — podemos nao
s6 manter os termos pequenos, como suprimir os tipos — os tipos podem ser
reconstruidos “convertendo para maitsculas” os termos. Note que os “conec-
tivos” também tém que ser convertidos: ¢, convertido para maitscula vira ‘x’,
e ‘—’ convertido para maitscula vira ‘—’.

.0 e =
[a,b]* b b—c
a c b = '(a,b)
a,c c = (b—c)(b)
T boac a,c = (a,c)
’ ’ a,b—a,c = Ma,b).(a,c)

Agrora cada barra da drvore define um novo termo a partir de termos an-
teriores; isto gera o diciondrio a direita... e a semantica de cada barra passa a
ser: “se eu sei o significado dos termos acima da barra, eu sei o significado do
termo abaixo da barra”, ou: “se eu sei ‘a’ e sei ‘¢’ eu sei ‘a,c’”, “se eu sei ‘b’ e
‘b—c’ eu sei ‘¢’”, etc.

Os “termos” em DNC funcionam de um modo bem diferente dos termos de
A-cdlculo. Em DNC nés permitimos nomes longos para varidveis (por exemplo,
‘a,b’), a distingdo sintdtica entre varidveis e termos nao-primitivos nao existe,
e, alids, sem o dicionario nao é nem possivel determinar sé pelos nomes de dois
termos qual é “mais primitivo” que o outro: por exemplo, b—c é mais primitivo
que ¢ mas a, b—a, c é menos primitivo que a, c.
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Preamble: DGs and topologies
A directed graph is a set of worlds, W,
and a relation RC W x W.

Important fact:

DGs induce topologies,

topologies induce DGs,

and in the finite case (which is what matters to us)

the correspondence DG < Top is especially well-behaved.

This will be our archetypical DAG:

V:=(W,R):=({a,B,7},{a—v8—=7})

o B
V= N/
Y
This will be the topological space induced by V:

(V,O(V)) = ({aaﬂa7}a{03{7}7{a”y}?{ﬂafY}a{aaﬁafY}})

We will use the correspondence mainly to represent
finite topological spaces by their associated DGs (or DAGs).
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Preamble: each DG induces a topology
A function f: W — {0,1} is “non-decreasing (on R)”
when all arrows in R are “non-decreasing”.

V= (VV,R) = ({OL,ﬂ,’y},{OLH’Y,ﬂHV})

o B
=N\

10
0 decreases on the arrow a — v: f(a — ) =1—0.
01
0 decreases on 3 — .
11
o decreases on both a — v and 8 — ~.

. . 000001 10 1
The non-decreasing functions V.— {0,1} are o, 1, 1,1, 1.
A “non-decreasing subset” W’ C W is one whose
characteristic function is non-decreasing (on R).
Definition:

Nondecr(W, R) := { W' C W | W' is non-decreasing on R }
For a DG D := (W, R) the induced topological space is:
(D, 0(D)) := (W, 0(D)) := (W, Nondecr(W, R))
For the dag V above, this is:

V,0(V)) :==({e, B,y 1 {0 {v } {ey B AB A {87} D)

Fact: topologies induced by DGs are closed by arbitrary intersections
of open sets — not just by finite intersections.
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Preamble: truth-values

Abuse of language:

We will often write subsets of W (non-decreasing or not)
as if they were the corresponding functions W — {0,1 }.
So, for example:

{B4}=",

O(V) = Nondecr(V) = {0, %, %", 104 ).

Terminology:

A function W — {0,1} is a “modal truth-value”.

A non-decreasing function W — { 0,1} is an “intuitionistic truth-value”.
We will see later that the modal truth-values live in a category Set"
and that the intuitionistic truth-values live in a category Set”.

Big fact: we can interpret propositional logic on modal truth-values...
. 01 , 10 _ 00
just operate on each world separately, e.g.: T A1 = 1.

On modal truth-values the “logic” is boolean but not two-valued.

Bigger fact: the intuitionistic truth-values on a DAG D form

a “Heyting algebra”, O(ID) — we can interpret propositional logic there,
but it will be intuitionistic — we can’t prove =—P > P there because
that is not always true: take P := 010, then —~—P = 1"

Mind-blowing fact: the notion of “taking the union of all open sets in

a given cover” can be interpreted as a new logical operation, obeying

some axioms: namely, T* =T, P** = P* P*ANQ* = (PAQ)".

This “taking the union...” operation is a particular case of something much
more general: Lawvere-Tierney topologies, that generalize both

sheaves and forcing.

We can understand sheaves through logic.

Tiny, but amazing, fact: we can understand all these ideas

from the cases of the DAGs V = %" and O(V)°P = ':’,

and then generalizing. This tiny & amazing fact —.that in a sense
is trivial, and is little more than working out in full detail

a few chosen exercises from topos theory books —

is the guiding thread for these notes.
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Topological spaces

A topological space is a pair (X, O(X))

where O(X) C P(X) is a topology on the set X:

(i) X €e O(X), b € O(X),

(if) O(X) is closed by arbitrary unions,

(iii) O(X) is closed by finite intersections.

Sometimes an O(X) is closed by arbitrary intersections...

This happens for (V,O(V)) and for (R, P(R)), but not for (R, O(R)).
When this happens we say that O(X) is an Alexandroff topology,
and that (X, O(X)) is an Alexandroff space.

We will refer to these things by more mnemonic names:
O(X) is a “topcai”, (X, O(X)) is a “topcai space”.

There is an inclusion of categories - a functor:
TopCAI — Top

and we can take a topology O(X) and look at the set of
arbitrary intersections of its open sets, [, O(X) -

it turns out that () O(X) is closed by arbitrary unions,
and is a topology - actually a topcai.

This operation - “closing by arbitrary intersections” - is a functor:

cai: Top — TopCAI
(X,0(X)) — (X,N0X))
and there is an adjunction (—) - cai.

(TopCALI is a “coreflective subcategory” of Top -
the inclusion funtor () has a right adjoint).

Note that its counit on (R, O(R)) is the
continuous map “id” : (R, P(R)) — (R, O(R)):

(X, 0(X)) = (X, 0(X)) (R, P(R)) <— (R, P(R))

T

Y, 0(V) = (Y,\NL0)) (R, OR)) —= (R,P(R))

cail

Top == TopCAI Top == TopCAI
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11

Preorders and partial orders

A preorder on W is a relation (<) C W x W that is:
(i) reflexive: a < a

(ii) transitive: if a < b and b < ¢, then a < c.

A partial order is a preorder that is also:

(iii) anti-symmetric: if a <b and b < a, then a = .

A directed graph (W, R) induces a preorder (W, <) := (W, R*)...
Mnemonic: the ‘*’ is a Kleene star: if aRaq RasRaszRb then
aR*, and thus aR*b; “R*” means “at least zero ‘R’s”

More formally: R* := ROUR' UR?U R? U

the reflexive/transitive closure of R.

(R is the diagonal — aR°b iff a = b).

Each cycle in a DG (W, R) becomes a set of

“equivalent elements” in the induced preorder

Let’s consider just DAGs for a while.

DAGs induce partial orders — aciclicity leads to antisymmetry.

A DG can be converted to a DAG by identifying the elements
in each cycle:

a—b {a, b}
\c —d {c, }i, e}
N/
i
f {f}

DG DAG

It turns out that the inclusions DG* — DG and DAG* — DAG
have left adjoints: in both cases, * 4 (—),

and the units of the adjunctions take a DG or DAG (W, R)

to its reflexive and transitive closure.

Also, the inclusion DAG* »— DG have a left adjoint: ‘q’.

G*%DG

/. [/

DAG* == DAG

2008graphs January 1, 2009 23:23



12

The minimal DAG for a topology

Each DG D = (W, R) induces a topcai: (W, Nondecr(R)) -

but several DGs induce the same topcai.

One canonical way to represent a topcai by a DG is to pick the
associated DG* - it is the maximal DG generating that topcai.

For finite DAGs - i.e., for finite Tj topological spaces -

there is also a minimal DAG generating that topology...

The process to obtain it is to drop all the arrows that are not
“essential”.

Here’s an example:

(by the way: ess 4* - («))

¢
/|’Q
\CQ

DAG § DAG*

(The moral is that there is something canonical about
representing topologies (T, and on finite sets)
by DAGs with very few arrows)

2008graphs January 1, 2009 23:23



Presheaves

A presheafon (X,0(X)) is a

(contravariant) functor O(X)°P — Set.

A sheaf is a presheaf obeying a

“glueing condition”, that we will see later.
Example: C* : O(R)°? — Set. If V C U, then:

Py

c=(V) =—Cc=(U)

[ 1]

Vv U

The map p§ := C>(V - U) is called the
“restriction function”.

We will borrow some terminology from the case of functions
defined over open sets: for a presheaf P : O(X)°P — Set and
WCVCU,

pu € P(U) a “function/element with support U”
px € P(X) a “global function/element”
pg P(U) — P(V) ‘“restriction function”
(b = P(V —U))

Functoriality means two conditions on restriction maps:
PW —V)oP(V —U)=PW—U)
PW)<— P(U)
‘ )
w

PV

\/
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14

A subtopology of R
The topology on the DAG V can be seen as a subtopology of R...
Consider the quotient g below, or, equivalently, ¢':

q:R — {(-00,0], (0,1), [1,00)}
¢ :R—{a,v, 6}

¢ '(P{a,7,8})) € P(R) is a topology on R with 8 open sets.
¢ (P({a,7.5}) NOR) c OR) C P(R)

is a topology on R with 5 open sets.

Compare:

{a, 8,7} (—oo,

AN /5:

o B {0‘77} {677} (_0071) ( 700) (—o0,

0]
oMW W
¢ ¢

0 0

We will refer to these open sets as X, U, V, W, 0

AN AN
NSNS
f ]

000 (Z)

Note that U will sometimes mean a specific open set - 1P -
sometimes an arbitrary open set; same for the other letters.
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15

Coherent families
Now let X := R, and let’s consider two

functions defined on subsets of X:
zyp: U —

T —
OU: U — R
z — 0

(Le., we're defining xx, xy, xv, Tw, Ty,
OXaOUaOV;OWaO(D)'

We can also consider families of functions,

whose supports are families of open sets -

{zv,zv} and {zy, 0y} are families with support {U,V'}.
Note: {zy,zy Oy} is not a family with support {U,V}
because V has two “images”: xy and Oy .

A function defined on U - say, xy -

induces a family {xy} defined on {U}, i.e., on 1§0 -
and another family, {zy, zw, g, },

defined on all open sets under U -

i.e., on the saturation of {U} = 1§0, which is 1?0.

When we try to extend the family {zy, 0y}

0
to the saturation of !, i.e., to 4,

0 1
we see that we get two different candidates for W -
xw # Ow - which is not good...

A family is said to be coherent when its extension

to the saturation of its support is well-defined.

{zy,zv} is coherent, {1, 0y} is not.

Here’s a way to define formally coherence for families:

a family ay is coherent iff Vay,ay € ay av|luny = av]vnv.
Note that {zy, Oy, 0w} is not coherent.
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Saturation and bisaturation

Notation: the calligraphic letters U, V, W

will denote families of open sets, and the annotations
o0 o7 *®’ will indicate how saturated a family is -
U°: not necessarily saturated

U*: saturated

U**: bisaturated

We will sometimes use e, ee to denote operations:

e is “saturate”, ee is “bisaturate”.
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A (bad) presheaf on a DAG
X
/N
U Vv
N/

i

VA
/

0,1)

!

0 0
Here is a presheaf over (X, O(X)) (“P”) that is
not a sheaf - it violates the two sheaf conditions.
P is not collated - because
{pu,pv'} is a coherent family (on {U,V})
that cannot be collated to a global function.
P is not separated - because
there are two different collations for {py,py }.

T
3
=0T 8
8

=7

P(X) {px,px}

/ N\ LN\

P(V) {pv}  Apv.py}

\/ N

P(W) {pw}
| |
P(0) {po}
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A presheaf on a DAG: its space of germs

Its space of germs is built like this:

for each point in X - i.e., for a, 3,; let’s look

at « - look at all open sets containing « (namely:
U={a,v},X = {e,,7}) and take the colimit of P
on these open sets as they get smaller and smaller.

As there is a smallest open set containing « - and g,
and v - these colimits/germs are very easy to calculate:

ﬁ; =~ gg a B {pa}  {ps, 0}
Ph =Dy \ / N A
Dy 1= PW Y {pv}

The projection map F — X is the obvious one.

We need to put a topology to Ej; it turns out (why?) that the
right topology is the one induced by the obvious graph.

Now this induces a sheaf of sections...

(I am skipping some steps -)

X {sx,5x}

NN

)
S( SV)  Asur A{svosyd
)

m/s\o;

N
/ N\
w {sw}

/ /
S(0) {s0}

(
(
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Dense and stable truth-values

At the left below we see the representation as a presheaf

of the “ee-stable truth-values”, {w |w®*®* =w} C Q;

It is a sheaf, and it can be recovered from its “global elements”.

0O 0 0 0 1 0 1
000001 10 11 1111

SN N

At the right above we see the representation as a presheaf
of the “ee-dense truth-values”, Qee :={w |w** =T} C Q.
It is not a sheaf, it can’t be recovered from its “global elements”

as {w | w*® =w} can; yet - and I have to admit that I found that

very surprising - we can recover the modality from
the subobject 46 — 2, by:
w®® = w € Nee
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Substitution principles for ‘<’

We will also use the following “substitution principles”:

if P, Q, Q', R, R are formulas, and R’ is obtained from R
by replacing some occurrences of @Q in it by @', then

PHQ & Q' PrQeQ PER
P-FR<e R P+ R

The “theorems” above - and the ones in the following slides -
can be proved using just the sequent calculus rules for intuitionistic
propositional logic augmented with the three axioms for “*’.

To make the proofs more manageable we will often make use of the
“‘s trick”: starting from P+ Q < Q' and a proof of P+ R

we can produce a proof of P+ R/, where R’ is R

with some occurrences of ‘Q’ replaced by ‘Q’’s.

Example:

()

To prove these first theorems —

and the ones in the next slides —
we will need some facts about the
biconditional, ‘<’, that is defined as:

PesQ:=(P>Q)N(Q>P)
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Lawvere-Tierney Modalities
A (Lawvere-Tierney) modality is an operation “*’ on
intuitionistic truth-values obeing the following three axioms:

PFQ
T P*FQ* P+ P

The supersaturation operation, P* := P*®®, is an example of an
LT-modality — but there are others:
P*:= P =P
p* =PV :=aqVvP
p* .= PP .= P
First theorems:
Pr P*
(PANQ)*FP*NQ*
PAQ*F(PAQ)*
PANQ*HF(PAQ)*
From what we already have,
we can prove that P < () implies
P* < Q" in a weak sense:
FP&Q FPsQ
FP>Q FQoP
PHQ QFP
FP'>Q" FQ*>P*
F P s QF

But there isn’t much that we can do when P < @ is weaker than T...

For example, if P := %' and Q:= 1107 then P & @ = o0,

We will treat this as an axiom:

PsQF P e QF

(Actually this is true for any unary operation
on truth-values of a Heyting algebra).
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LT-modalities and ‘and’
Theorems:

PF P

(PANQ)*EP*NQ*
PAQ*F(PAQ)*
P*AQ*H(PAQ)*

Proofs:
PFrT&P
FTe T PFT* < P*
PHT & P~
P+ P
PFQ& (PAQ)
PAQFP PAQFQ PHQ* & (PAQ)
(PAQ)*FP* (PAQ)"F Q* PHQ* 5> (PAQ)*
(PAQ) P AQ* PAQ F (PAQ)

P*ANQF(PAQ)*

PANQ*F(P*AQ) (PPAQ)F(PAQ)™ (PAQ)™H(PAQ)*

PAQ F (PAQ)

The cube of modalities for ‘A’ has only four different
truth-values (the case P* := P77, P = 0117 Q= 1o
shows that they are all distinct):

PAQ PAQ* o o
N N N N
(PAQ)y =+ (PAQY) i i
P*AQ P*AQ* 1P by
N N\ \ AN
(P*/\Q)*:(P*/\Q*)* 1117111
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LT-modalities and ‘or’

Theorems:
PHPVQ QFPVQ P v Q* = (PVQ)
PrE(PVQ) Q' H(PVQ)  (PrVQ) F(PVQ)™

P*VvVQ*F(PVQ)* (P*VQ")*H(PVQ)*

The cube of modalities for ‘v’ has only five different
truth-values (the case P*:= P77, P = 80(1), Q= 908
shows that they are all distinct):

PVQ——PVQ 1
N N N N
(PVQ) == (PVQ) 11

PVQo PV 0} i
N N N N
(P"V Q) — (PTV QY

=
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LT-modalities and implication
Theorems:

(Po>Q)APFQ

(PoQ)AP)FQ

(PoQ)* AP+ Q" P>QFH(PoQ)" (Po>Q)"'FP >Q*

(PoQ)"F P >Q* P>QF P Q"
(PoQ)"FP Q" P*AN(PoQ")*FQ*
P*AN(Po2Q) FQ* (PoQ@Q")*F P Q"

The cube of modalities for ‘>’ has only five different truth-values.
The case P* :=19v P, P= (1)8, Q= 88 distinguishes them all:

PoQ P>Q* 8 — 11
N\ N\ . AN
(P>Q)* (P>Q*)* 91 i
*> + *oQR* 88—‘2%%
. . AN
(P*>Q)* — P*:Q) 9

When the modality is P* := == P we can’t distinguish the four
truth-values in the front face of the cube (the ‘(P? 5 Q")*’s)...
The best that we can do is this. For P* := -—-P, P = 80(1), Q= 41)08

P2Q——=FPo¢" ff—1
NN N\,
(PoQ)* (PoQ) 11 11

P'oQ > ProgQr i i
NN NN
(P oQ) = (P >Q")" =11
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The topologies for ‘or’ and ‘implies’
0,2 ?
01V2?r=171
10 % ! 0 ? 0 ? ?

o ‘0O 0O 1 0\O 1 ]
01577 = ((1)13c g?) = (%(1)1 \/C;?) = ((1)0\/037) = (,1??)
The image of an idempotent operator is its fixset.

L]
111 ooo o.o
1 ooo o..
%1 o:oO o:o.
[<) [)
7N, : N\ ARy
01 eo0 oe ) e0
1 oo oo ooo o.o
AN N NN
000 001 [ X) o.o ooo ooo
0 ooo ooo ooo 0o
\ . / AN . / N\ ‘ V4
00 oo oo
0 LX) ooo
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More about double negation
The value of =—P depends only on the values of P
on the terminal worlds (the “leaves”).

How to see this:

=P is the opposite of P at the leaf-worlds and is the
biggest possible (i.e., as 1-ish as possible) in the
other worlds;

== P coincides with P at the leaf-worlds and is the
biggest possible in the other worlds.

Let’s write (temporarily) *** for “apply “*’ or not”.

P’ AQ stands for: PAQ, PAQ*, P*ANQ, P* ANQ* —

four truth-values.

Fact: when * = ——,

(P* A Q")* is well-defined,

(P" v Q")* is well-defined,

(P? 5 Q")* is well-defined,

(=P)* is well-defined —

the outer ‘*” dominates everything and makes
all inner applications of ‘*’s irrelevant.

In the cubes from the previous slides,

“the outer *’ dominates” means:

“the four truth-values in the front face —

the (P’ op Q*)*’s — are all equivalent”.

This is not true for the modality P* = P(®V) = o Vv P!
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Modalities: alternative axioms
A Lawvere-Tierney topology is usually defined as an arrow j : Q — Q
such that these three diagrams commute:

o7 o axQ—2 50

NANEN

Ox0—2 >0

1 t

‘Which means:

W[Tl=w[T] WP =w[P7] PP AQT]=w[(PAQ)]

TET* pP* = pP** P* = P*

PAQ*F(PAQ) (PAQ) P AQ

It is not clear that these axioms (“LT axioms”)

are equivalent to the three axioms (“LT-modality axioms”)

that we were using before...

We know that the modality axioms imply all the LT axioms,

but it is not obvious that the modality axioms T - T*
PHQ

P Q*

can be proved from the LT axioms...

and

Here are the proofs:

PFQ
THFP>Q
PrTepP TFP& (PAQ)
PHT*& P* TkEP < (P*ANQY)
PFT o P~ TFP S5Q
P+ P* P*EQ*

2008graphs January 1, 2009 23:23



LT-modalities and the quantifiers
Quantifiers:

Pr3x.P Jx.P* + (Fx.P)*
P F (3z.P) (3z.P) - (3z.P)™
Jz.P* F (Jz.P)* (Jz.P*)* F (Fz.P)*

Vz.P+F P
(Vz.P)* - P* (Vz.P*)* F V. P
(Vo.P)* FV&.P*  (Vo.P*)* F Va.P*

dz.P —— 3Jz.P* Ve. P ——— V. P*

(Jz.P)* == (Jx.P*)* (Vz.P)* — (Vz.P*)*
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The fibration of saturated covers
For a DAG D, define D' := O(D)°? = (O(D), D).
For example, when V := ", we have:

0 0

. 00
1 1 0
1 1 1
0 |
10 0

] 00
0

(07

The projection |J : O(Q°P) — Q respects A and V, i.e.,
if JU®* =U and |JV* =V then

U vV®) =UVV (this is easy to see), and also
UU* AV®) =U AV (look at each w € JU® A V?®)).

Each fiber Uf1 U is a lattice with top element ¢/°*°.
When Q) comes from a finite topology we can take
the intersection of all saturated covers of U,

and this gives a minimal saturated cover for U,
that we will call U°*~.

Fact: e— = - ee.

101 101 111
o) % % %
Al A T
o— U oo = U f|:o
g _ v
Q X X X
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Embedding

A topology is a DAG in a natural way:

if VU € O(X), then V - U iff VCU.

We will prefer O(X)°P rather than O(X), for two

reasons: one is because then we will have a monotonic function

l: D — OD)yer

a — |«

{e, 8,7} S
Y\ 7N\
@ g {o,v} {89 ¥ o
N/ N/ =/
v {7} %
| |
0 &
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Geometric morphisms

The obvious continuous function f:3 —V

induces a geometric morphism, (f* 4 fi) : Set® — Set".
It is essential: f'— f* - f..

A, Ag A, Ag
fi
A, Ag+Ag+A,
B, Bg B, B
-
B, B,
<
C, Cs CaxC, CpxC,
fx
> \ /
Cy Cy
fi
Set? F SetbbyV
fs

A simpler example:

(A, A (A + 4,0)

| =

(B,B') <>— (B, B)

| = |

(C,C") = (CxC’,1)

q
—_—
Set? <—;— Set?
g

2008graphs January 1, 2009 23:23



