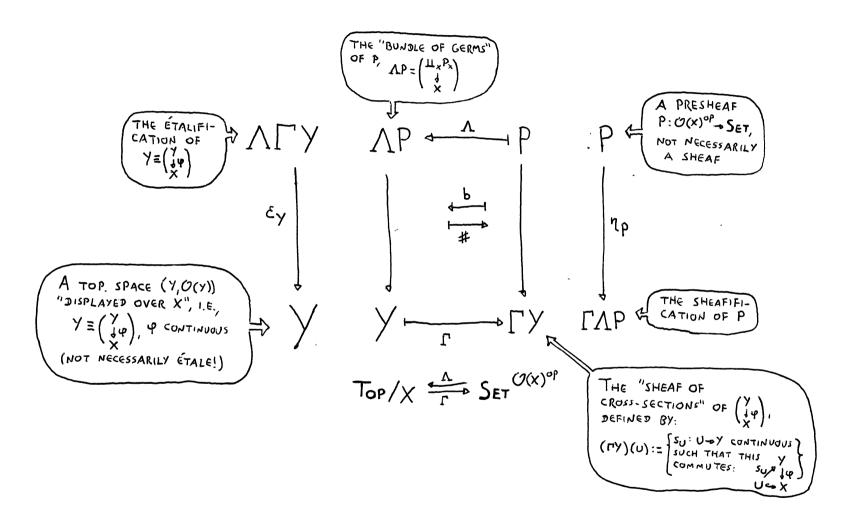
1. AN ADJUNCTION: AHT (GERMS + CROSS - SECTIONS)



2. ORDER TOPOLOGIES

LET V BE THIS DAG: " " BE LET V* BE ITS REFLEXIVE TRANSITIVE

CLOSURE: V* = 3 B

LET W = (V, O(V))

=({\dagger, \beta, \bet

BE V REINTERPRETED AS A TOPOLOGICAL SPACE WITH THE ORDER TOPOLOGY.

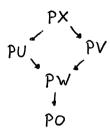
THEN O(V) is this category, whose morphisms are the inclusions:

 $X = \frac{1}{1} = \left\{ \begin{array}{c} \alpha_{\gamma} \beta_{\gamma} \\ \gamma \end{array} \right\}$ $V = \frac{1}{1} = \left\{ \begin{array}{c} \alpha_{\gamma} \beta_{\gamma} \\ \gamma \end{array} \right\}$ $V = \frac{1}{1} = \left\{ \begin{array}{c} \alpha_{\gamma} \beta_{\gamma} \\ \gamma \end{array} \right\}$ $V = \frac{1}{1} = \left\{ \begin{array}{c} \alpha_{\gamma} \beta_{\gamma} \\ \gamma \end{array} \right\}$ $V = \frac{1}{1} = \left\{ \begin{array}{c} \alpha_{\gamma} \beta_{\gamma} \\ \gamma \end{array} \right\}$ $V = \frac{1}{1} = \left\{ \begin{array}{c} \alpha_{\gamma} \beta_{\gamma} \\ \gamma \end{array} \right\}$ $V = \frac{1}{1} = \left\{ \begin{array}{c} \alpha_{\gamma} \beta_{\gamma} \\ \gamma \end{array} \right\}$ $V = \frac{1}{1} = \left\{ \begin{array}{c} \alpha_{\gamma} \beta_{\gamma} \\ \gamma \end{array} \right\}$ $V = \frac{1}{1} = \left\{ \begin{array}{c} \alpha_{\gamma} \beta_{\gamma} \\ \gamma \end{array} \right\}$ $V = \frac{1}{1} = \left\{ \begin{array}{c} \alpha_{\gamma} \beta_{\gamma} \\ \gamma \end{array} \right\}$ $V = \frac{1}{1} = \left\{ \begin{array}{c} \alpha_{\gamma} \beta_{\gamma} \\ \gamma \end{array} \right\}$ $V = \frac{1}{1} = \left\{ \begin{array}{c} \alpha_{\gamma} \beta_{\gamma} \\ \gamma \end{array} \right\}$ $V = \frac{1}{1} = \left\{ \begin{array}{c} \alpha_{\gamma} \beta_{\gamma} \\ \gamma \end{array} \right\}$ $V = \frac{1}{1} = \left\{ \begin{array}{c} \alpha_{\gamma} \beta_{\gamma} \\ \gamma \end{array} \right\}$ $V = \frac{1}{1} = \left\{ \begin{array}{c} \alpha_{\gamma} \beta_{\gamma} \\ \gamma \end{array} \right\}$ $V = \frac{1}{1} = \left\{ \begin{array}{c} \alpha_{\gamma} \beta_{\gamma} \\ \gamma \end{array} \right\}$ $V = \frac{1}{1} = \left\{ \begin{array}{c} \alpha_{\gamma} \beta_{\gamma} \\ \gamma \end{array} \right\}$ $V = \frac{1}{1} = \left\{ \begin{array}{c} \alpha_{\gamma} \beta_{\gamma} \\ \gamma \end{array} \right\}$ $V = \frac{1}{1} = \left\{ \begin{array}{c} \alpha_{\gamma} \beta_{\gamma} \\ \gamma \end{array} \right\}$ $V = \frac{1}{1} = \left\{ \begin{array}{c} \alpha_{\gamma} \beta_{\gamma} \\ \gamma \end{array} \right\}$ $V = \frac{1}{1} = \left\{ \begin{array}{c} \alpha_{\gamma} \beta_{\gamma} \\ \gamma \end{array} \right\}$ $V = \frac{1}{1} = \left\{ \begin{array}{c} \alpha_{\gamma} \beta_{\gamma} \\ \gamma \end{array} \right\}$ $V = \frac{1}{1} = \left\{ \begin{array}{c} \alpha_{\gamma} \beta_{\gamma} \\ \gamma \end{array} \right\}$ $V = \frac{1}{1} = \left\{ \begin{array}{c} \alpha_{\gamma} \beta_{\gamma} \\ \gamma \end{array} \right\}$ $V = \frac{1}{1} = \left\{ \begin{array}{c} \alpha_{\gamma} \beta_{\gamma} \\ \gamma \end{array} \right\}$ $V = \frac{1}{1} = \left\{ \begin{array}{c} \alpha_{\gamma} \beta_{\gamma} \\ \gamma \end{array} \right\}$ $V = \frac{1}{1} = \left\{ \begin{array}{c} \alpha_{\gamma} \beta_{\gamma} \\ \gamma \end{array} \right\}$ $V = \frac{1}{1} = \left\{ \begin{array}{c} \alpha_{\gamma} \beta_{\gamma} \\ \gamma \end{array} \right\}$ $V = \frac{1}{1} = \left\{ \begin{array}{c} \alpha_{\gamma} \beta_{\gamma} \\ \gamma \end{array} \right\}$ $V = \frac{1}{1} = \left\{ \begin{array}{c} \alpha_{\gamma} \beta_{\gamma} \\ \gamma \end{array} \right\}$ $V = \frac{1}{1} = \left\{ \begin{array}{c} \alpha_{\gamma} \beta_{\gamma} \\ \gamma \end{array} \right\}$ $V = \frac{1}{1} = \left\{ \begin{array}{c} \alpha_{\gamma} \beta_{\gamma} \\ \gamma \end{array} \right\}$ $V = \frac{1}{1} = \left\{ \begin{array}{c} \alpha_{\gamma} \beta_{\gamma} \\ \gamma \end{array} \right\}$ $V = \frac{1}{1} = \left\{ \begin{array}{c} \alpha_{\gamma} \beta_{\gamma} \\ \gamma \end{array} \right\}$ $V = \frac{1}{1} = \left\{ \begin{array}{c} \alpha_{\gamma} \beta_{\gamma} \\ \gamma \end{array} \right\}$ $V = \frac{1}{1} = \left\{ \begin{array}{c} \alpha_{\gamma} \beta_{\gamma} \\ \gamma \end{array} \right\}$ $V = \frac{1}{1} = \left\{ \begin{array}{c} \alpha_{\gamma} \beta_{\gamma} \\ \gamma \end{array} \right\}$ $V = \frac{1}{1} = \left\{ \begin{array}{c} \alpha_{\gamma} \beta_{\gamma} \\ \gamma \end{array} \right\}$ $V = \frac{1}{1} = \left\{ \begin{array}{c} \alpha_{\gamma} \beta_{\gamma} \\ \gamma \end{array} \right\}$ $V = \frac{1}{1} = \left\{ \begin{array}{c} \alpha_{\gamma} \beta_{\gamma} \\ \gamma \end{array} \right\}$ $V = \frac{1}{1} = \left\{ \begin{array}{c} \alpha_{\gamma} \beta_{\gamma} \\ \gamma \end{array} \right\}$ $V = \frac{1}{1} = \left\{ \begin{array}{c} \alpha_{\gamma} \beta_{\gamma} \\ \gamma \end{array} \right\}$ $V = \frac{1}{1} = \left\{ \begin{array}{c} \alpha_{\gamma} \beta_{\gamma} \\ \gamma \end{array} \right\}$ $V = \frac{1}{1} = \left\{ \begin{array}{c} \alpha_{\gamma$

A PRESHEAF P: U(V) DET

IS GIVEN BY 5 SETS AND 5 MAPS;

DIAGRAMMATICALLY



SUCH THAT THE & COMMUTES.

THE CONSTRUCTION OF THE "BUNDLE OF GERMS" $\Lambda P := \begin{pmatrix} \mu_x P_x \\ \downarrow \end{pmatrix}$ INVOLVES A TOP. SPACE

 $\coprod_{x} P_{x} \equiv (\coprod_{x} P_{x}, \mathcal{O}(\coprod_{x} P_{x}))_{x}$ Where the set $\coprod_{x} P_{x}$ IS A DISTOINT UNION OF
SPACES OF GERMS:

 $\coprod_{x} P_{x} := \{(x,p_{x}) \mid x \in X, p_{x} \in P_{x}\};$ FOR EACH POINT $x \in X$ THE SPACE OF GERMS P_{x} IS THE QUOTIENT

Px:= (II PU)/x,
WHERE "/x" IDENTIFIES A PUEPU
AND A PVEPV EXACTLY WHEN
THERE IS AN OPEN SET WAX
SUCH THAT PULUNW = PV VNW.

IN A PRESHEAF P. O(V) OP-0 SET
THESE SPACES OF GERMS ARE
EASY TO CALCULATE.
FOR EXAMPLE, TAKE X:= T.
THE OPEN SETS CONTAINING T
ARE UNIX AND THE QUOTIENT

= (bx π bn π bn π bn)/*

b^x := (π bn)/*

IS THE COLIMIT OF THIS DIAGRAM: PX

PU PV

EACH EQUIVALENCE CLASS

[PU] & Pr HAS EXACTLY ONE

ELEMENT IN THE LOWER

OBJECT ABOVE, PW,

WHICH IS P APPLIED TO

THE SMALLEST OPEN SET

CONTAINING T; SO

Pr = {[PW] r | PWEPW}

= PW,

P_a≅PU, P_β≅PV,
P_a≅PW.

3. THE EVIL PRESHEAF

Suppose FOR A MOMENT THAT:

$$X = (-\infty, +\infty)$$

$$U = (-\infty, 1), \qquad V = (0, +\infty),$$

$$W = (0, 1),$$

$$0 = \emptyset,$$

REGARDING O(V) AS A SUBTOPOLOGY OF O(R).

THEN IT MAKES SENSE TO SPEAK OF THE PRESHEAF C^{∞} : $\mathcal{O}(V)^{op} \rightarrow Set$

$$C^{\infty}(x)$$
 $C^{\infty}(V)$
 $C^{\infty}(V)$
 $C^{\infty}(V)$

AND IT IS A SHEAF,
IN THE FOLLOWING SENSE:

DEF: A PRESHEAF P. IS

A SHEAF IFF EACH

COMPATIBLE FAMILY IN IT

HAS EXACTLY ONE GLUEING.

IN Co, IF FU AND FV

ARE COMPATIBLE, I.E.,

IF FU: U -> IR

AND FV: V -> IR

ARE Co AND THE RESTRICTIONS

FULURY = FULW

COINCIDE, THEN THERE IS

EXACTLY ONE "GLUEING"

fx: X -> IR

IN Co(X) SUCH THAT

fx|U = FU

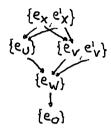
AND fx|v = FV

NOTE THAT:

- EACH COMPATIBLE FAMILY HAS AT MOST ONE ELEMENT IN EACH PU,
- *COMPATIBILITY MEANS THAT "ALL RESTRICTIONS ARE WELL-DEFINED"
- · GLUEING (fu, fw) CORRESPONDS TO:

THE EVIL PRESHEAF,

E: O(V) DEFINED AS:



FAILS THE TWO CONDITIONS
THAT A PRESHEAF MUST OBEY
TO BE A SHEAF: IT IS NOT

SEPARATED BECAUSE THE
COMPATIBLE FAMILY {eu, ev}

HAS TWO DIFFERENT
GLUEINGS, ex AND ex

AND IT IS NOT COLLATED

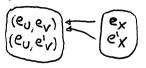
BECAUSE THE COMPATIBLE

FAMILY {eu, ev} DOESN'T

HAVE A GLUEING.

NOTE THAT WE CAN
LOOK AT THESE CONDITIONS "FROM THE OTHER
DIRECTION": EACH SET OF
OPEN SETS UCO(X), E.G.,
{U,V}, INDUCES A MAP
FROM "GLUEINGS" TO
"COMPATIBLE FAMILIES",

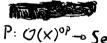
WHICH IN THE CASE
OF THE "COVER" {U,V}
IS:



PU×PV ← PX

THIS FAILS TO BE INJECTIVE ("SEPARATED - NESS FAILS") AND FAILS TO BE SURJECTIVE ("COLLATEDNESS FAILS").

IN THE GENERAL CASE, FOR A PRESHEAF



P: $O(x)^{op} \rightarrow Set$,

WE WOULD HAVE TO

CONSIDER, FOR

EACH "COVER" $U \subseteq O(x)$ OF UU, THE

ASSOCIATED MAP
FROM P(UU) TO THE

SET OF COMPATIBLE
FAMILIES WITH SUPPORT U;
THEN "P IS SEPARATED"
MEANS THAT ALL THESE
MAPS ARE WISCITIVE,
"P IS COLLATED" MEANS
THAT THEY ARE ALL
SURJECTIVE.

5. THE TOPOLOGY ON AP

LOOK AGAIN AT THE ACTION OF THE FUNCTOR A ON OBJECTS:

$$\begin{pmatrix} \coprod_{x} P_{x} \\ \downarrow \\ X \end{pmatrix} = \bigwedge P \iff P$$

$$Top/X \stackrel{\Lambda}{\longleftarrow} Ser^{O(X)^{op}}$$

WE SAW HOW TO CONSTRUCT
THE <u>SET</u> OF GERMS, $\coprod_{x} P_{x}$,
FOR A GIVEN PRESHEAF P: $O(x)^{op}$ Set,
BUT WE DON'T KNOW YET THE
TOPOLOGY $O(\coprod_{x} P_{x})$.

WE NEED THE NOTION OF "ÉTALE MAP".

FIX A DISPLAYED SPACE (Y) (OVER X).

WE WILL USE LETTERS WITH PRIMES
FOR POINTS AND SUBSETS OF Y AND
THE SAME LETTERS WITHOUT PRIMES
FOR THEIR IMAGES IN X - FOR EXAMPLE,
IF a' & U' & O(Y) THEN a:= p(a')
AND U:= p(U')

WE WILL SAY THAT AN OPEN SET U'E O(Y) IS "SIMILAR TO ITS IMAGE" WHEN:

- . U€O(x)
- · (plu): U'-U IS A BIJECTION,
- · (plu) is CONTINUOUS,
- · (plu1)-1 15 CONTINUOUS.

NOTATIONS:

SPACE (Y) IS ETALE WHEN

Lp(Y) COVERS Y, OR, EQUIVA-LENTLY, WHEN:

Ya'∈Y. Lp(a) ≠ Ø.

NOW FOR EACH $U \in \mathcal{O}(x)$ AND FOR EACH $p_U \in PU$ WE WILL DEFINE THE
"NATURAL SECTION" PU
AS THIS:

Note THAT EACH PU

FOR EXAMPLE, IN THE EVIL PRESHEAF E: O(V) OF - SET.

$$\{e_{x}, e'_{x}\}$$
 $\{e'_{u}\}$
 $\{e'_{w}\}$
 $\{e'_{o}\}$

THE ELEMENT E'VEPV INDUCES THIS NATURAL SECTION:

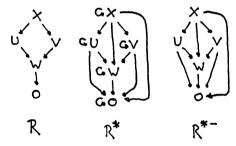
 $\begin{bmatrix} e_{\nu} \end{bmatrix}_{\gamma} \begin{bmatrix} e_{\nu} \end{bmatrix}_{\beta} \begin{bmatrix} e_{\nu} \end{bmatrix}_{\beta} \begin{bmatrix} e_{\nu} \end{bmatrix}_{\gamma} \begin{bmatrix} e_{\nu} \end{bmatrix}_{\gamma}$

THE USUAL DEFINITION FOR THE TOPOLOGY $O(U_xP_x)$ IS THAT IT IS THE WEAKEST TOPOLOGY ON U_xP_x THAT HAS ALL THE SETS OF THE FORM PU(U) AS OPEN SETS (AND AS SETS "SIMILAR TO THEIR IMAGES")... BUT WE WILL SEE THAT WHEN X AND P ARE FINITE (AND X IS TO) THEN $O(U_xP_x)$ IS TRIVIAL TO CALCULATE.

LET REAXA BE A RELATION ON A SET A OF VERTICES.

(A 15 FIXED)

LET'S DENOTE BY R* ITS TRANSITIVEREFLEXIVE CLOSURE AND BY R
"R MINUS ITS IDENTITY ARROWS".
EXAMPLE:

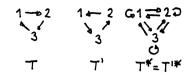


WE WILL SAY THAT R AND R'
ARE EQUIVALENT WHEN R* = R'*.
EACH EQUIVALENCE CLASS

[R] := $\{R' \mid R^{1*} = R^*\}$ HAS A BIGGEST ELEMENT, R^* , BUT R^* IS CLUMSY TO DRAW.

IN SOME CASES [R] WILL ALSO HAVE A SMALLEST ELEMENT, Ress
THAT CAN BE CALCULATED BY
DROPPING ALL THE "NONESSENTIAL ARROWS" FROM R.

NOTE THAT IN THIS CASE



WE HAVE T=T'*, BUT T T'

AND BOTH T AND T' ARE

MINIMAL, IN THE SENSE THAT

IT IS NOT POSSIBLE TO DROP

ARROWS FROM T OR T' AND

STILL GET EQUIVALENT

RELATIONS... SO [T] DOES

NOT HAVE A SMALLEST

ELEMENT. ALSO, IF \(\le \)R*

DEFINITION: WE SAY THAT

R IS WEAKLY ACYCLICAL

WHEN R IS ACYCLICAL IN THE

USUAL SENSE.

DEFINITION: WE SAY THAT

AN ARROW (&, B) ER 15 ESSENTIAL

WHEN (R\{(a, B)\})* \neq R*. WE WRITE

THE SET OF ESSENTIAL ARROWS

OF R AS R^{ess}.

IN THE EXAMPLES THAT WE HAVE:

$$R = R_{e22} = R_{e22} = R_{e22} = R_{e22}$$

$$L_1 = L_{e22}$$

$$L_2 = L_{e22} = R_{e22} = R_{e22} = R_{e22}$$

THEOREM: IF A IS FINITE

AND RCAXA IS WEAKLY

ACYCLICAL, THEN [R] HAS

A MINIMAL ELEMENT, AND

IT IS RESS.

AND R, R'S AXA ARE WEAKLY ACYCLICAL, THEN:

$$R \sim R' \Leftrightarrow R^* = R^{i*}$$

$$\Leftrightarrow [R] = [R']$$

$$\Leftrightarrow R^{ess} = R^{ess}$$

TREAT THE VERTICES AS
CHARACTERS WE CAN REPRESENT
PATHS AS STRINGS AND SETS
OF PATHS AS JETS OF STRINGS.
WE CAN DEFINE PRECISELY WHAT
IS THE SET OF ALL PATHS ON R,
THE SET OF ALL PATHS ON R
FROM A TO B, AND FUNCTIONS
THAT CALCULATE THE ENDPOINTS
OF A PATH AND THAT REPLACE
ALL OCCURRENCES OF A CERTAIN
ARROW IN A PATH - OR IN A
SET OF PATHS - BY A PATH

WHOSE ENDPOINTS ARE THAT ARROW.

IN THE EXAMPLE

THE SET PATHS R*

IS INFINITE, BECAUSE IT
CONTAINS PATHS WITH
AN ARBITRARY NUMBER
OF "IDENTITY ARROWS" FOR EXAMPLE,

"XXXUWWOOO" & PATHSR*
BUT WE CAN APPLY TO
PATHSR* THE SERIES OF
REPLACEMENTS

REPL ("XX", "X")

REPL ("UU", "U")

REPL ("VV", "V")

REPL ("WW", "W")

REPL ("00", "0")

WHICH WILL TAKE ALL

PATHS IN PATHS** TO

PATHS IN PATHS

AND THEN

REPL ("XO", "XWO")
REPL ("XW", "XVW")
REPL ("UO", "UWO")
REPL ("VO", "VWO")
TO MAP PATHS R*- TO
PATHS R...

WE HAVE BEEN REPRESENTING (CERTAIN) TOPOLOGIES AS DAGS, BUT HAVEN'T SEEN PRECISELY YET HOW - AND WHEN - THIS CAN BE DONE ...

A TOPOLOGY O(x) IS SAID TO

BE ALEXANDROFF IF ALL INTER
SECTIONS OF OPEN SETS IN IT

YIELD OPEN SETS. FOR EXAMPLE, O(R) IS NOT ALEXANDROFF, BUT

EVERY TOPOLOGY ON A FINITE

SET X IS ALEXANDROFF.

IF O(X) IS ALEXANDROFF AND WEX THEN THE CONSTRUCTION

YIELDS AN OPEN SET - THE

SMALLEST OPEN SET CONTAINING &
AND THE SETS OF THE FORM &

FORM A BASIS FOR O(x): FOR

ANY OPEN SET $V \in O(x)$ WE HAVE

THE CONSTRUCTION US MAKES

SENSE FOR ARBITRARY SUPSETS

SEX, AND - IN ALEXANDROFF

SPACES - IT YIELDS THE SMALLEST

OPEN SET CONTAINING S. I.E.,

WE HAVE

$$\bigcup_{\alpha \in S} + \alpha = \bigcap \{ \cup \in \mathcal{O}(x) \mid \cup \geq S \}_{\alpha}$$

THIS IS DUAL - IN A SENSE THAT WE WILL MAKE PRECISE LATER - TO THE CONSTRUCTION OF THE INTERIOR OF A SET AS THE UNION OF ALL OPEN SETS CONTAINED IN IT; WE CALL THIS NEW OPERATION THE "COINTERIOR". FORMALLY, Scount := U 1x = U(nea(x)/1025) S'int := U ta = U {U & O(x) | U & S} THE TWO EQUALITIES HOLD IN ALEXANDROFF SPACES NOTE THAT SINE = Uld WORKS BECAUSE THE "da"S FORM A BASIS. AN EXAMPLE; FOR OUR TOPOLOGICAL SPACE W= a, B (V, O(V))= ({\alpha, \beta, \cdot \ WE HAVE: (01) coint = { p} coint = \ {U&O(\(\V)\) \ U \(\mathbb{2}\)\} = 01 0 11 = 01 = { \beta, \beta } AND ALSO: U 40 = 1B

= { B, 8 }.